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Abstract We study the Hubbard model in dimension d = m, within an approximation that 
simultaneously reproduces the atomic limit and the weak-coupling limit up to secand order in the 
interaction shength U .  This method. which is a slightly modified version of an approximation 
suggested by Edwards and Hen& is applied to the calculation of the selfenergy and of the 
spechal function in the paramagnetic regime for different U,  band fillings n, and temperatures 
T. We find Fermi-liquid behaviour for small U and (for half-filling n = 0.5) a metal- 
insulator (Moa) transition at a critical value U,,, but also a metallic non-Fed-liquid phase for 
intermediate values U < U-. We compare our resulk with results obtained within the secand- 
order perturbation theory in U and (at finite temperature) with the (essentially exact) quantum 
Monte Carlo (QMC) results. Qualitakively. the approximation reproduces the comct tendencies 
obtained by Qhic, but in detail here  are still discrepancies, in patticular for intermediate values 
of U .  

1. Introduction 

Since the discovery of high-temperature superconductivity there has been a strong revival of 
theoretical interest in the Hubbard model (HM) [1,21. Though it has now been investigated 
for more than thirty years, a really satisfactory treatment and understanding of the model 
does not yet exist, with the exception of the one-dimensional case, where we know the exact 
solution for the ground state 131. In dimensions d 1, however, a reliable approximate 
solution, being applicable in the whole parameter regime (for example, in both the weak 
and strong coupling regime) is not available. A few years ago Metzner and Vollhardt [4] 
introduced the limit of infinite dimensions, d = w, for correlated lattice electron models 
like the HM. Meanwhile, it has been shown 1.51 that these models are greatly simplified for 
d = w, but that their essential properties are similar to those of realistic low dimensions 
d = 2,3. Because of the simplifications one can hope to achieve, or at least come close to, 
the exact solution of the d = 00 m, which would provide for a proper mean-field theory 
of the HM in a general dimension d 16.71. 

The simplifications in the limit d = 00 arise from the fact that the self-energy becomes 
sitediagonal. In other words, the local approximation of a momentum-independent self- 
energy C(z), which has frequently been used before without justification, becomes exact 
in thii limit [4-9]. This can be shown most easily using the standard (self-consistent 
Feynman diagram) U-perturbation expansion for the self-energy in terms of skeleton 
diagrams (containing only full Green function lines); here all types of diagrams exist as 
for finite d, but only those containing only the local (on-site) propagator survive the large-d 
limit. Consequently, all theorems and rules based on the standard perturbation treatment, for 
example the Luttinger theorem [IO] and the Kadanoff-Baym 11 11 scheme for constructing 
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conserving approximations, are applicable for d = 03 as for finite d. The HM remains, 
in particular, non-hivial for d = CO, and a naive mean-field treatment like the Haec 
approximation does not become correct. But the fact that only the local on-site propagator 
G(z) occurs in the skeleton diagram expansion of the self-energy Z(z) means that the 
self-energy must be a functional of G(z) alone [12]: E(z) = S[G(z)]. Therefore, the 
self-energy knows about the lattice only via the local propagator. Because the same type of 
skeleton diagrams occurs this functional dependence S[G] must be the same as in the case 
of an atomic problem [6,12] or of an impurity problem like the single-impurity Anderson 
model (SIAM) [13]. In other words, the functional dependence SIC] is universal for a 
large class of models. Unfortunately, one does not know the exact functional form of 
S[G]; the trivial solution of the atomic problem yields the explicit form E&) but not its 
functional dependence on the (atomic) propagator. Brandt and Mielsch [12] have shown 
that in principal one can obtain the functional dependence by solving the atomic problem 
in the presence of two time-dependent external fields acting on spin-up and spin-down 
electrons. But this problem (with hl’o auxiliary Kadanoff-Baym Ill]  fields) is also not 
exactly solvable. However the d = 03 Falicov-Kimball model (FKM) [14], i.e. a simplified 
version of the HM for which only the electrons of one spin direction are mobile, could be 
solved exactly [12], because. then only one auxiliary field is needed. For the general d = 03 

HM (i.e. two auxiliary fields) only numerical (Monte Carlo) treatments have been possible 
up to now, using a time discretization of the auxiliary fields [I51 or using the equivalent 
mapping to the Anderson impurity model [13]. As the SIAM can efficiently be treated by 
means of quantum Monte Carlo (QMC) methods, this mapping and the subsequent QMC 
treatment of the SIAM (with an additional self-consistency requirement) has been applied 
recently to obtain essentially exact results for the infinite-d HM 116-191. 

Nevertheless, it is necessary to develop and apply improved approximations to the 
d = 03 HM, because QMC yields its results along the imaginary time axis (or for the discrete 
Matsubara frequencies). Therefore, it is difficult to achieve results for very low temperatures, 
and an analytical continuation using the maximum entropy method is necessary to obtain the 
dependence of dynamical quantities on real frequency. Furthermore, because the mapping 
on the atomic or single-impurity problem is essential, the QMC treatments cannot be extended 
to finite d, for example, by means of a l/d-expansion. But the existing ‘essentially exact’ 
QMC results are very useful and important, as approximations may be applied to the same 
parameters (finite temperatures, etc) so that comparisons of the approximate results with 
the exact QMC results are possible now and allow for a judgment of the quality of the 
approximation. 

when constructing improved approximations for the HM there exist several criteria 
that a meaningful approximation should fulfill. It should, of course, reproduce the trivial 
exactly solvable limits of vanishing correlation, U = 0, and the atomic limit (hopping 
t = 0) should also be reproduced. Furthermore, for d = CO the exact Brandt-Mielsch 
solution of the FKM should be reproduced, and for the general HM a (Mott-Hubbard) metal- 
insulator transition should exist for half-filling (occupation per spin direction n = 0.5) and 
sufficiently strong interaction U. For a weak interaction U, however, the U-perturbation 
treatment and thus the LuUinger theorem and its consequences should be contained in a 
proper approach. Most of the existing approximations do not fulfill all of these criteria. 
Hubbard’s early treatments [1,2] of the model are based on the equation of motion for the 
one-particle Green function. Naturally the free electron and atomic limit are fulfilled, and 
the lower and upper Hubbard band and a meta-insulator (Mott) transition are reproduced. 
Probably the description of this metal-insulator transition, as well as the description of the 
high-temperature properties, is already quite good within the Hubbard-Ill 121 (or the alloy 
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analogue) approximation; but these treatments violate the Luttinger theorem [lo] at zero 
temperature, T = 0. The weak-coupling U perturbation theory is not reproduced, and the 
Fermi-liquid quasiparticles are absent, except for the trivial limit U = 0. There have been 
many attempts to improve Hubbard’s treatment by means of higher-order equation of motion 
decouplings [20,21], but most of these treatments are also uncontrolled approximations 
and usually violate the Luttinger theorem [lo] and do not exhibit Fermi-liquid behaviour. 
Another class of approximations is based on the weak-coupling perturbation theory with 
respect to the interaction seength U. The simplest non-trivial approximation withii this 
scheme is the second-order U-perturbation treatment (SOm), which can be studied either 
relative to the Hartm-Fock solution (sow-HF) 122,231 or fully self-consistently (SC- 
SOPT) [U]. The son-w has the advantage that at least in the symmetric case (n = 0.5) the 
atomic limit is reproduced, whereas the SC-SOPT is the simplest conserving approximation in 
the Kadanoff-Baym scheme [ I  11. Such conserving approximations based on higher-order 
resummations of the U-perturbation series have been used recently by Bickers and co- 
workers [25] and by Serene and Hess [261. The particle-hole T-matrix approximation for the 
self-energy, applied by one of us to the two-dimensional HM [27] also belongs to this class of 
conserving approximations; applications to the infinitedimensional HM have been performed 
by Menge and Muller-Hartmann [28]. From these recent investigations [27,28] one also 
knows that these conserving approximations based on standard weak-coupling expansions 
and resummations properly fulfill the Luttinger theorem and the Fermi-liquid properties, but 
they fail to reproduce the metal-insulator transition [28]. This is certainly connected with 
the fact that these weak-coupling expansions usually do not properly reproduce the exactly 
solvable atomic limit. 

From the above statements it is clear that it is highly desirable to use an approximation 
which contains both the weak-coupling limit (at least to some finite order in the interaction 
U) to reproduce the Luttinger theorem and the Fermi-liquid properties, and the atomic limit 
to be able to reproduce a metal-insulator (Mott) uansition for sutiiciently large U. For the 
symmetric m the SOK-W accidentally fulfils these requirements, i.e. it is exact up to order 
U’ and reproduces the atomic limit [23]. However, as indicated by the numerical results 
presented in this paper, Fermi-liquid behaviour never breaks down, i.e. the SOPT-HF does not 
contain a metal-insulator transition. An approximation, which away from half-filling also 
reproduces the atomic limit simultaneously with the second-order U-perturbation treatment, 
was suggested and investigated (for the singleimpurity and periodic Anderson model) by 
Rodero and co-workers [29]. But in the symmetric case this approximation coincides 
with the SOPT-HF so that, again, the metal-insulator transition is missing in this approach. 
A different approximation fulfilling the requirements mentioned above was suggested by 
Edwards and Hertz [30]. They s M  from the Hubbard-III (alloy analogue) approximation, 
use an expansion of the corresponding approximate self-energy expression up to second 
order in U, and compare this expression with the coned finite-order SoPT result. By this 
means they construct an improvement of the alloy analogy simultaneously being correct up 
to order U* in a weak-coupling expansion. First results presented in [30] show that this 
approach may yield very interesting and promising results, namely for half-filling a Fermi- 
liquid metallic regime, a non-Fenni-liquid regime and an insulating regime depending on 
the interaction strength U. But Edwards and Hertz did not present explicit results for the 
spectral function and self-energy obtained within their approximation. Furthermore, they 
used a model assumption for a certain spectral function characterizing the SOFT self-energy. 

In the present paper we investigate the properties of this Edwards-Hem approximation 
(EHA) [30] in some detail. We slightly reformulate this approximation and introduce, in 
particular, an effective atomic level E,, relative to which the U-perturbation treatment has 
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to be performed; in the symmetric case (n  = 0.5) E, = EO + Un-,  (where EO is the 
bare atomic level position) corresponds to the H m e e  level, for general filling n, E, has 
to be determined self-consistently. Looking only for paramagnetic solutions we apply this 
approach to the d = cm HM (with a Gaussian unperturbed density of states) and calculate 
(without further additional model assumptions) the frequency dependence of the self-energy 
and spectral function for different correlation strengths U, fillings n and temperatures T. 
We confirm the existence of metallic Fermi-liquid and metallic non-Fermi-liquid phases and 
of a metal-insulator transition within this approach. For finite temperature we compare 
the results obtained within the EHA with ‘essentially exact’ QMC results [17] and find that 
qualitatively the overall features of the spectral function are fairly well reproduced. In 
particular, the metal-insulator transition occurs at a U of the correct magnitude. In detail, 
however, there are deviations between the EHA and the QMC results concerning, in particular, 
the magnitude of the (Mott-Hubbard) gap and the detailed reproduction of quasiparticle and 
separated satellite peaks. Therefore, in our opinion, it is still not clear how far the EHA 
prediction of a metallic non-Fermi-liquid phase is realistic. 

The paper is organized as follows. Section 2 briefly describes the model, the basic 
definitions and our reformulation of the EHA. The numerical results obtained within this 
approach are presented and compared with QMC results in section 3. Section 4 contains a 
discussion of these results and our conclusion. 

S Wermbter and G Czycholl 

2. Model and Edwards-Hertz appmximation 

The Hubbard Hamiltonian is [ 11 

where ( )  denotes the sum over nearest-neighbour vectors of a hypercubic lattice of 
dimension d,  U is the spin index, EO is the atomic energy, t the nearest-neighbour hopping 
matrix element and U is the on-site Coulomb interaction strength. The hopping term in 
the Hamiltonian is scaled so that the non-trivial limit is reached in the limit of infinite 
dimensions d --f bo: 4t2d = t” = constant. For the assumed next-neighbour hopping on 
the d-dimensional hypercubic lattice we have 

with IC = ( k l ,  k2,  . . . , kd). The density of states (per spin direction) of the unperturbed 
(non-interacting) system has a Gaussian form 141: 

(2) 
I N 0 (0) = -e~p[-(o/t’)~]. 

t*& 

A quantity of primary interest is the one-particle Green function G,(z) of the HM for 
arbitrary U: 
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which equation defines the self-energy Z,(z) of the spin-a electrons, @(z)  being the Green 
function of the uncorrelated system. The spectral function is obtained from the one-particle 
Green function according to 

1 
(4) Na(o) = --ImG,(o+iO). 

II 

We need a suitable approximation for the self-energy X,(z). Following Edwards and 
Hertz [30] we use the following ansatz: 

where 

denotes the band filling (occupation number) of the spin-u electrons and f(o) the Fermi 
function: 

f(o)= exp - [ (ok;:) + 

Replacing 6,(z) in (5) by the oneparticle Green function G,(z) one obtains the usual 
CPA equation [31] corresponding to the alloy analogue (Hubbard-JII) approximation for 
the HM. But following Mwards and Hertz we want to use an approximation for 6 , ( z ) ,  
which reproduces the SOR when expanding the self-energy expression (5) in powers of the 
Coulomb correlation U up to second order in U. This condition is fulfilled by the following 
approximation: 

m Q(o’) 6, ( 2 )  = lm do’ 
z - E,(z )+  E,  -0‘ (7) 

* ( U )  = Sm Sm L I d w  d 0 2 d ~ 3  N!!,,Coi - E-,)N!?,(w - E-,) n-c(l -n-,,) -- -m 

x N:(Y-&) ( f ( ~  )U -f(02)l+f(~)[f(wz)-f(oi )I}W+oi -w-Y). 
(8) 

Here the shifts E, (leading to an effective atomic level for the U electrons) have to be 
determined self-consistently so that the full occupation number n, appearing in (8) is equal 
to the unperturbed occupation corresponding to N:(o - ,Eo): 

m m 

It, = lmdwN,(o) f (o)  = L doN:(o - &)f(o). (9) 

It is now easy to see that in the atomic limit (and also for t h e m ) ,  in which the unperturbed 
density of states (of the one -a spin species for the FKM) is a delta function, one obtains: 

iQo) = N:(o - E,). (10) 
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Therefore, according to (7) and (3) one gets in the atomic limit and for the FKM: 

S Wemrbter and C Czycholl 

Gm (2) = Go ( z )  = G0(z - &(Z)) (11) 

and (5) reduces to the Hubbard-III (alloy analogue, CPA) condition. Therefore, the atomic 
l i t  and the exact Brandt-Mielsch solution [12] of the FKM are contained in the general 
approximation (5). Furthermore, a finite-order expansion of (5) up to second order in U 
yields 

Here it is justified to use the zeroth-order (uncorrelated) occupation number n ,  or the one 
corresponding to H-e-Fock in the term already having a prefactor U' and to replace the 
atomic level shift by zero or by the Hartree value Unrt,, and one obviously recovers the 
standard SOFT expression of the perturbation theory up to second order in the correlation 
U, either in finite order or relative to Hartreflock. So the approximation (5) for the self- 
energy is exact up to second order in the correlation and it reproduces the atomic limit and 
the exact FKM solution for large d .  

In their work Edwards and Hertz [30] did not introduce and discuss the effective atomic 
level shift E,, which is, however, essential to ensure that the Em always (i.e. for arbitrary 
filling) reproduces the atomic limit and the exact solution of the M, because the prefactor 
[n-,(l - n-,,)]-' in (8) has to be cancelled. Only in the half-filled (symmetric) case 
is this shift relatively simple, namely E, = Un-, = U / 2 .  Furthermore, [30] used the 
local approximation (of a k-independent, sitediagonal self-energy) as an additional ad hoc 
approximation, probably not knowing at that time that this becomes correct for d = CO. 

Explicit numerical results for the kequency dependence of spectral function and self-energy 
were not presented in [30]. For the (relatively few) numerical results obtained so far, a semi- 
elliptic model density of states was used for No(@),  and an additional model assumption was 
used for i?:(w), which is essentially the spectral function corresponding to the SOFT self- 
energy. For our numerical calculations we use the Gaussian form for @ (being appropriate 
for an infinite-dimensional hypercubic lattice) and we calculate the corresponding #: (i.e. 
avoid an additional ad hoc model assumption). The equations are solved iteratively, i.e. for 
given parameters U and temperature T and given occupation number n, we start from an 
initial guess for the chemical potential f i ,  determine the atomic level shifts E,  necessary for 
the given no and calculate the modified spectral function i?:(w). As e ( z )  can be determined 
from #:(U) we can then solve the CPA-like equation (5) for the self-energy. The resulting 
full spectral function No(w) allows for a new determination of p so that the pretended band 
filling is reproduced and the procedure is iterated until convergence is reached. Numerical 
results are presented in the following section. 

3. Numerical results 

For OUT numerical calculations we measure energies (frequencies) in units of the effective 
bandwidth I' = 1, and look only for paramagnetic solutions; consequently, we can drop the 
spin indices in the equations. Figures 1-3 show the density of states N(w), the imaginary 
part ImZ(w + io) and the real part of the self-energy Rex(@ + io) as a function of energy 
w for temperature T = OK, an occupation (per spin direction) n = 0.5 (symmetric half- 
filled HM) and a bare atomic level position EO = 0. In the half-filled system we have 
p = U / 2  = E*,,. Figure 1 shows the development of the density of states N(w)  as a 
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,--. 
v 
3 
Z 

_ .  . w 
Figure 1. Density of states N ( m )  as a function of energy o for different interaction strengths 
U, band filling n = 0.5 and tempemure T = 0 K. Inset: density of states N b )  at the chemical 
potential as a function of U for n = 0.5, T =OK. 

function of frequency for different values of the interaction strength U. For very small 
U(= 0.5). N(w)  has still essentially the Gaussian form characteristic of the uncorrelated 
system; up to U = 2 there is still a peak at the chemical potential p = U / 2 ,  but the 
density of states also shows shoulders as precursors of the lower and upper Hubbard band. 
Increasing U further, the quasiparticle peak at p gradually becomes smaller and finally 
disappears, and for U - 4 one obtains a splitting in an upper and lower Hubbard band and 
a Mom-Hubbard gap. Thus, as expected, the EHA contains both Fermi-liquid behaviour and 
a quasiparticle peak at the chemical potential in the weak-coupling regime and a metal- 
insulator transition for sufficiently strong interaction U > 4. The inset to figure 1 shows 
the value of the density of states at the Fermi level p. When the local approximation is 
valid, N ( p )  must be unrenormalized by the interaction (i.e. the same as for U = 0) if the 
Fermi-liquid properties and the Luttinger theorem are fulfilled 18,101. This is valid up to 
U = 2, but for 2 < U < 4 there is a finite density of states at the Fermi level but with a 
smaller value than for U = 0; this means that the system is conducting, but does not show 
Fermi-liquid behaviour, and for U > 4 the system is a Mott insulator ( N ( p )  = 0). A curve 
very similar to that to the inset of figure 1 was obtained by Edwards and Hertz [30] for the 
semi-elliptic model density of states. 

Figure 2 presents the imaginary part of the self-energy ImX(w + io). Close to U c 4, 
the imaginary part of the self-energy diverges at the chemical potential, in agreement with 
[30]. This behaviour is due to the fact that, for U < 4, equation (5) can be expanded 
around the chemical potential. For U > 4 the series in U diverges and the solution of 
the modified CPA equation changes. The inset shows the imaginary part of the self-energy 
for small U. Obviously we see the quadratic vanishing near the chemical potential p, 
ImE(p + w + io) - w2, which must be the case if the Luttinger theorem is fulfilled. But 
in the intermediate regime 2 < U < 4, ImE(p +io) is finite, i.e. the Luttinger theorem is 
violated; for not too strong U there remain reminders of Fermi-liquid behaviour in form of 
a minimum in IImE(w + i0)I at p. Beyond the value U = 4, the imaginary part of the self- 
energy develops a gap around the chemical potential p. Figure 3 demonstrates the energy 
dependence of the real-part of the self-energy Rex@). In particular, the behaviour of the 
real part for U = 3 is interesting. The real part changes symmetry and the quasiparticle 
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-41 " " " " ' I  " I 
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Figure 2. Imaginary parl of lk self-energy X(o) as a function of energy w for different 
interaction strengths U, band Cuing n = 05 and temperature T = 0 K. Inset imaginary pan of 
the selfenergy for U = 0.5. I and T = 0 K, n = 0.5. 

- ' Ud1.5 ' . u=2.0 

U=3.0 ----.__ 

I 
-2 0 2 4 6 

0' 
-4 

w 
Figure 3. Real p x t  of the self-energy Z(o) as a function of en- o for different interaction 
smngth U, band filling n = 0.5 and temperature T = 0 K. Inset: real p y t  of lhe selfenergy for 
U = 0.5, 1 and T = OK, n = 0.5. 

mass enhancement m+/m = 1 -aX/ao[,=,, diverges for U -P 4. In the inset we present the 
real part of the self-energy for small interaction strength U, yielding the standard negative 
derivative at p, leading to a mass enhancement and being characteristic for a Fermi liquid. 

In figure 4 we have plotted the density of states N ( o )  as a function of energy for 
U = 3 for different band fillings n and T = OK. With decreasing n we again approach the 
Fermi-liquid regime, which is also present for larger values of U for small enough filling 
(occupation number). The value of the density of states at the chemical potential increases 
as we decrease the band filling n, and finally reaches the value of the uncorrelated density 
of states. In the inset we present the Gaussian density of states N o ( o )  and the calculated 
effective spectral function $(U), which vanishes quadratically with o at j& - E.,. If W 
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W 
Figure 4. Density of states N ( o )  as a function of emergy o for different band fillings ?and for 
temperature T =OK, interaction saenglh U = 3. Inset: density of states No@) and N o ( o )  as 
a function of energy for different band fillings n and T =OK. 
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Figure 5. Imaginary paR of lhe self-energy E(o) as a function of energy o for different band 
fillings n and for temperature T =OK, interadion saengih U = 3. 

is a measure of the bandwidth of No(@) (truly the Gaussian density of states is non-zero 
for all energies) the bandwidth of $(w) is 3W. The reason for this behaviour is a double 
convolution in the energy U in the expression for the density of states ko(w). The weight 
of fio(o) below and above the Fermi energy is n and 1 - n respectively. The tendency 
to approach again the Fermi-liquid regime with decreasing n is in agreement with results 
obtained in 1301 and can also be seen from the self-energy imaginary part ImX(w + io) 
shown in figure 5, in which a (quadratic) extremum develops with decreasing n which 
finally reaches h Z ( p  + io) = 0 in the Fermi-liquid phase. 

In figures 6-9 we compare our numerical results for half-filling n = 0.5 and for finite 
temperature ,9 = l / k ~ T  = 7.2 with the SoPT-Hp and with the QMC results of Pruschke and 
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0.6 

0.5 

0.4 

w 
Figure 8. Density of states N(o) as a funnion of frequency o for band filling n = 0.5. 
interaction svength U = 3, and inverse temperature 0 = I / b T  = 7.2. (a) (EM); (b): (QMC) [SI; 
(c): SOPT. 

. n=0.5, B = 7.2, U = 4.0 
- 
- 

W 
Fi!gure 9. Density of slates N(o) as a function of frequency o for band filling n = 0.5. 
interaction su'ength U = 4, and inverse temperature ,9 = I /%T = 1.2. (0) (ma); (b): (QMC) [SI; 
(c): SOPT. 

separated by a gap) are obtained. For U > 4 both QMC and EHA yield a Mott-Hubbard 
insulator, the gap being, however, considerably smaller in the EHA compared to the QMC 
result. Therefore the qualitative tendency obtained and observed here in the EHA results 
agrees with the (essentially exact) QMC results. In particular, the EHA prediction of a metallic 
non-Fermi-liquid phase is not in contradiction with the available QMC results, as the absence 
of the quasiparticle peak for U = 3 demonstrates. Of course, this quasiparticle peak can 
still develop for very low temperatures T inaccessible to QMC. Quantitatively and in detail, 
however, there are still deviations and discrepancies between QMC and Em, in particular 
concerning the appearance of satellite (upper and lower Hubbard) bands separated from the 
quasiparticle peak in the weak-coupling regime and the width of the Mott-Hubbard gap in 
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0 
Figure 10. Density of scltes N ( w )  as a function of frequency w for band filling n = 0.47. 
interaction smngth U = 4. and inverse temperature p = l/ksT = 3.6. (a )  (EHA): (6): (QMC) [E]. 
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Figure 11. Density of states N(w)  as a function of frequency w for band filling n = 0.47. 
interaction strength U = 4, and inverse temperature p = I/keT = 1.2. (a) (EM); (b): (QMC) [E]. 

the strong-coupling (insulating) regime. 
Away from half-filling, comparisons between QMC and EHA are shown in figures IC- 

15. In figures 10-12 we show for n = 0.47 and different temperatures T the EHA 
results and compare them with QMC results published by Pruschke and Jarrell [ 171. For 
p = l / k ~ T  = 3.6 (figure 10) the curves are similar, though there are still deviations in 
detail. This changes for lower temperatures, see figure 12. In particular, the additional 
structure indicating the reappearance of a quasiparticle peak in the lower Hubbard band 
obtained in QMC is absent in the EHA. Again the (quasi) gap, which is situated away from 
the Fermi energy in the non-half-filled case, is too small in EHA compared to the QMC 
gap. In figures 13-15 the corresponding comparison between EHA and QMC is shown for 
fixed temperature f3 = 7.2 and U = 4 but different band filling. Obviously the agreement 
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Figure 13. Density of states N ( o )  as a function of frequency m for band filling n = 0.44. 
interanion strength U = 4, and inverse temperature fl = I / h T  = 1.2. (a) (EHA); (b): (QMC) 181. 

between QMC and EHA improves with decreasing filling (see figure 15). 

4. Conclusion 

In conclusion, we have presented a reformulation of the Edwards-Hertz approximation 
(EM) [30], and we have applied the EHA to the Hubbard model in dimension d = bo 
and presented the first detailed EHA calculations of spectral functions and self-energies. 
EHA is exact in the -electron limit (vanishing correlation U) and in the atomic limit 
(vanishing hopping t = 0). Furthermore, in the weak-coupling limit the EHA agrees with 
the SOPT. i.e. when expanding the EHA expression for the self-energy in a series in powers 
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Figure 14. Density of states N ( o )  as a function of frequency o for band firring n = 0.395, 
interaction strength U = 4, and inverse temperature f l  = I1k.T = 7.2. (a) (EHA); (b): (QMC) [SI. 
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Figure 15. Density of states N ( o )  as a function of frequency o for band filling n = 0.285, 
intenction seen!& U = 4, and inverse temperature B = 1 f k s T  = 7.2. (a) (uu): (b): (QMC) [SI. 

of the correlation strength U one obtains agreement with the standard (Feynman diagram) 
expansion up to order U'. Even in higher orders in U (where the E m  is no longer exact) 
the conditions of the Luttinger theorem are fulfilled. Furthermore, when applied to the 
Falicov-Kimball model (a) (i.e. if the electrons of the -a spin direction are frozen and 
cannot hop) the EHA expression for the self-energy (of the spin +a electrons) reduces to 
the alloy analogue approximation (CPA). Thus the exact (Brandt-Mielsch [12]) solution of 
the d = CO FKM is also reproduced within the EHA. Judged from the reproduction of exactly 
known limits the EHA appears to be one of the best existing general approximation schemes 
for the HM (at least for d = CO). It can be considered as a generalization of the Hubbard- 
JRU approximation so that the weak-coupling limit up to order U 2  is reproduced, and it 
can also be considered as a generalization of the SOPT so that the atomic limit is fulfilled 
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and an application to the strong-coupling regime (to an investigation of the Mott-Hubbard 
metal-insulator transition) is possible. 

The results for the spectral function and self-energy show a clear indication of Fermi- 
liquid behaviour for small interaction (U c 2). as the self-energy imaginary part vanishes 
quadratically at the chemical potential 1.1 and as a quasiparticle peak exists and the density 
of states at the Fermi level is unaffected by the interaction. For strong interaction (U > 4) 
and half-filling the EHA predicts a Mott insulator. Thus the EHA is able to describe a metal- 
insulator transition and a crossover from a weak-coupling Fermi-liquid phase to a strong- 
coupling insulating phase. For intermediate-coupling strength (2 < U < 4). however, the 
EHA yields a metallic non-Fermi-liquid phase indicated by the fact that the absolute value 
of the self-energy imaginary part has only a minimum but does not vanish at 1.1, and by 
a reduction of the density of states value at 1.1 compared to the uncorrelated (U = 0) 
value. To judge the reliability of these results we compared them with available ‘essentially 
exact’ results obtained by F’ruschke and Jarrell [17] using a mapping on the SIAM (with 
the hybridization and effective conduction band to be determined self-consistently) and a 
QMC treatment of this effective SIAM. On an overall scale we find qualitatively reasonable 
agreement between the QMC and the EHA results. In detail and quantitatively, however, 
there are also deviations and discrepancies, in particular conceming the reproduction of the 
upper and lower Hubbard band and simultaneously a quasiparticle band, and also concerning 
the width of the Mott-Hubbard gap. Therefore, particularly for intermediate values of the 
correlation, the reliability of the BHA results is not yet clear, though also the existing QMC 
results do not exclude the possibility of a metallic non-Fermi-liquid phase. We did not 
analyse in detail the nature of the metallic non-Fermi-liquid state found here, because we 
believe that it should first be clarified if this state is an artefact of the EHA or if it is realistic 
(this could be done by investigating, for instance, if such a state persists in improved versions 
Of the EHA). 

In the future the EHA can, of course, be applied to the investigation of other 
interesting properties; for the d = CO Hubbard model one can calculate correlation 
functions (susceptibilities and transpoIt quantities) and one should look for the existence of 
antiferromagnetic and ferromagnetic solutions. In our opinion, only after this investigation 
for magnetic solutions is completed (an investigation that is currently under way), will the 
construction of a phase diagram in the U-n plane (probably containing a paramagnetic 
metallic Fermi-liquid, a non-Fermi-liquid, an insulating phase and magnetic phases) be 
meaningful. Furthermore, applications of this approximation (or slightly reformulated 
versions of it) to other models like the SIAM, the PAM or the localized (f-) self-energy of the 
FKM should be possible. On the other hand, improvements of the BHA are certainly necessary 
and should be possible. As mentioned in the introduction, it must be possible to express 
the self-energy as a functional of the local Green function, X(z) = S[G(z)]. The EHA 
formulation does not provide for (an approximation of) the functional dependence on G(z ) .  
An approximation for the functional S[G]  being at least as good as the EHA could be directly 
applied to the other models mentioned above. Very recently, Li and d’Ambrumenil[32] tried 
to formulate an approximate functional for the d = CO HM, but in their approximation they 
do not find a Mott transition at a finite value of U so that their approximation seems to be 
worse than the EHA discussed here. In a recent paper Edwards [33] pointed out by means of a 
diagrammatic analysis that in the local approximation (Le. ford = CO) it should be possible 
to express the self-energy as a functional of G/(1 + CC): E(z) = S,[G/(l + XG)]. We 
would l i e  to stress, however, that the EHA does not give an approximation for the functional 
s,, either. In the EHA the self-energy is given as a functional S[GI or s , [C/(~ + xG)], 
where 6 is the effective Green function essentially corresponding to the son‘ self-energy, 
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but not as a functional of the local oneparticle Green function G as it should be according 
to the diagram analysis ford = CO. A modified approximation, which has all the advantages 
of the EHA but uses an explicit functional S[G] or &[G/(1+ CG)] for the self-energy, is 
currently under investigation by us. Of course one can also by to develop improvements 
of the EHA, which reproduce the U perturbation beyond the second order in U or which 
simultaneously reproduce the perturbation series around the atomic limit. 
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